The generator matrix 1 0 1 1 1 X+2 1 1 0 1 X+2 1 1 1 1 2X 1 3X 1 1 0 1 3X 1 1 1 1 1 1 1 1 2X+2 1 1 1 1 X 1 1 3X 1 1 3X 3X+2 2X+2 0 1 1 1 1 0 1 1 X 3X+2 1 1 0 1 X+1 X+2 2X+3 1 3 0 1 X+2 1 X+1 2X+1 3X+3 2X 1 3X 1 X+3 0 1 3X 1 1 X+3 3 X+1 3 X+3 2X+1 2X+2 1 X+1 3X+1 3X+1 X 1 3 3X+2 1 2X 2X+1 1 1 1 1 2 3X+1 3 2X+3 1 X+1 2X 1 1 2X+3 0 0 0 2X+2 0 0 0 0 2X+2 2 2 2X+2 2 2X 2X+2 2 2X+2 2X 2X 2X+2 2X 2X 2X+2 2 2X 2 2X+2 0 2X+2 0 2X+2 0 2 2X 2X 2X 0 2X+2 2 0 0 2X+2 0 2X 2X+2 2X 2X+2 2X 2X 2X 0 2X+2 2 2X+2 0 0 2X+2 0 0 0 0 2 2X 2 2X+2 2X+2 2 2X 0 2 0 2X 0 2X 2X 2X 2 2 2 2X+2 2 2X+2 2X+2 0 2X 2X+2 2X+2 2X 2 2X 0 2X+2 2 2X+2 2X 0 0 0 2X 2X 2X+2 2 2X+2 2X+2 0 2X 2X+2 0 2 0 0 2 2X 2X 0 generates a code of length 57 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 52. Homogenous weight enumerator: w(x)=1x^0+90x^52+270x^53+302x^54+608x^55+515x^56+572x^57+506x^58+588x^59+279x^60+252x^61+83x^62+4x^63+8x^64+8x^65+2x^66+2x^68+2x^69+2x^70+1x^78+1x^84 The gray image is a code over GF(2) with n=456, k=12 and d=208. This code was found by Heurico 1.16 in 0.281 seconds.